Форма орбитали f

Форма орбитали f

С 35. По  типу гибридизации атомных орбиталей в МВС, можно определить геометрию комплексов разного состава. Сначала — написать электронную формулу валентного уровня и построить схему распределения электронов по квантовым ячейкам. Например, для нейтрального атома никеля:

Переход 4s-электронов на 3d-подуровень превращает парамагнитный атом Ni0 в диамагнитную частицу Ni*: 

Полученные вакантные орбитали подвергаются гибридизации, образуя тетраэдрическую конфигурацию. Это тетраэдрический диамагнитный комплекс тетракарбонилникель [Ni(CO)4] (КЧ = 4), со значительной устойчивостью.

С 35. Если комплексообразователем служит никель(II) Ni2+ [Ar]3d84s0 4p0, то надобность в перемещении электронов с 4s-подуровня перед гибридизацией отпадает, так как для реализации КЧ 4 имеется достаточное число вакантных орбиталей: 

Такое строение имеет неустойчивый парамагнитный комплекс тетрабромоникколат(II)-ион [NiBr4]2

С 36. При объединении двух электронов 3d-подуровня в пару и превращении одной из квантовых ячеек этого подуровня в вакантную меняется и тип гибридизации, и характеристика получаемого комплекса: 

Тип гибридизации dsp2 и плоскоквадратная форма комплекса реализуются при образовании устойчивого диамагнитного комплекса тетрацианоникколат(II)-иона [Ni(CN)4]2 (КЧ = 4):

Если синтез цианидного комплекса вести в условиях избытка лиганда, можно реализовать КЧ 5:

Устойчивый диамагнитный комплекс пентацианоникколат(II)-ион [Ni(CN)5]3 имеет форму квадратной пирамиды: 

Октаэдрический комплекс никеля(II) [Ni(H2O)6]2+, хотя и парамагнитен, но достаточно устойчив. Его образование обусловлено sp3d2-гибридизацией атомных орбиталей никеля: 

Если в гибридизации участвуют АО внешнего d-подуровня, комплекс, как правило, в значительной степени парамагнитен и называется внешнеорбитальным или высокоспиновым. Строение таких комплексов может отвечать типу гибридизации, например, sp3d2.  Такие комплексы, при образовании которых гибридизация с участием АО предвнешнего d-подуровня, называются внутриорбитальными или низкоспиновыми и, как правило диамагнитны или слабо парамагнитны (все или почти все электроны комплексообразователя спарены, а тип гибридизации, например, d2sp3 или dsp2).

С 37. Для железа(II) : внешнеорбитальные, и внутриорбитальные комплексы.

На схеме  парамагнитный высокоспиновый гексафтороферрат(II)-ион [FeF6]4 и диамагнитный низкоспиновый гексацианоферрат(II)-ион [Fe(CN)6]4.

ТВС не дает ответа на вопрос, какой вид комплекса образуется в каждом конкретном случае, так как этот метод не учитывает влияния природы лиганда. Поэтому МВС должен обязательно дополняться данными о магнитных свойствах комплекса либо сведениями о влиянии лиганда на характер образующегося комплекса.

6.3. Теория кристаллического поля.

С 38.Теория кристаллического поля пришла на смену теории валентных связей в 40-х годах XX столетия. В чистом виде она сейчас не применяется, так как не может объяснить образование ковалентных связей в КС и совершенно не учитывает истинного состояния лигандов (например, их действительных размеров) даже в случае взаимодействий, близких к чисто электростатическим.

Уже с середины 50-х годов упрощенная ТКП была заменена усовершенствованной теорией поля лигандов, учитывающей ковалентный характер химических связей между комплексообразователем и лигандом.

Однако наиболее общий подход к объяснению образования комплексных соединений дает теория молекулярных орбиталей (МО), которая в настоящее время превалирует над всеми остальными. ММО предусматривает и чисто электростатическое взаимодействие при отсутствии перекрывания атомных орбиталей, и всю совокупность промежуточных степеней перекрывания.

Рассмотрим основные понятия ТКП, которая, как и ТВС, все еще сохраняет свое значение для качественного описания химических связей в комплексных соединениях из-за большой простоты и наглядности.

●В ТКП химическая связь комплексообразователь – лиганд считается электростатической. В соответствии с этой теорией лиганды располагаются вокруг комплексообразователя в вершинах правильных многогранников (полиэдров) в виде точечных зарядов. Реальный объем лиганда теорией во внимание не принимается.

●Лиганды, как точечные заряды, создают вокруг комплексообразователя электростатическое поле (“кристаллическое поле”, если рассматривать кристалл комплексного соединения, или поле лигандов), в котором энергетические уровни комплексообразователя и прежде всего 

dподуровни расщепляются, и их энергия изменяется.

Характер расщепления, энергия новых энергетических уровней зависит от симметрии расположения лигандов ( октаэдрическое, тетраэдрическое или иное кристаллическое поле ).

●Когда в качестве лигандов координируются молекулы H2O, NH3, CO и другие, их рассматривают как диполи, ориентированные отрицательным зарядом к комплексообразователю.

С 39. Рассмотрим случай октаэдрического расположения лигандов (например, [CoF6]3 или [Co(NH3)6]3+). В центре октаэдра находится атом-комплексообразователь М(+) с электронами на d-атомных орбиталях, а в его вершинах – лиганды в виде точечных отрицательных зарядов (например, ионы F или полярные молекулы типа NH3). В условном ионе М(+), не связанном с лигандами, энергии всех пяти d-АО одинаковы (т.е. атомные орбитали вырожденные).

С 71. Однако в октаэдрическом поле лигандов d-АО комплексообразователя попадают в неравноценное положение. Атомные орбитали d(z2) иd(x2 y2), вытянутые вдоль осей координат, ближе всего подходят к лигандам. Между этими орбиталями и лигандами, находящимися в вершинах октаэдра, возникают значительные силы отталкивания, приводящие к увеличению энергии орбиталей. Иначе говоря, данные атомные орбитали подвергаются максимальному воздействию поля лигандов. Физической моделью такого взаимодействия может служить сильно сжатая пружина.

Другие три d-АО – d(xy), d(xz) и d(yz), расположенные между осями координат и между лигандами, находятся на более значительном расстоянии от них. Взаимодействие таких d-АО с лигандами минимально, а следовательно – энергия d(xy), d(xz) и d(yz)-АО понижается по сравнению с исходной.

Таким образом, пятикратно вырожденные d-АО комплексообразователя, попадая в октаэдрическое поле лигандов, подвергаются расщеплению на 2 группы новых орбиталей – 

трехкратно вырожденные орбитали с более низкой энергией, d(xy), d(xz) и d(yz),

и двукратно вырожденные орбитали с более высокой энергией, d(z2) и d(x2y2). Эти новые группы d-орбиталей с более низкой и более высокой энергией обозначают d и d:

Разность энергий двух новых подуровней d и d получила название параметра расщепления 0:

E2 – E1 = 0

Расположение двух новых энергетических подуровней d и d по отношению к исходному (d-АО) на энергетической диаграмме несимметричное:

(Е2 – Е0)  (Е0 – Е1).

Квантово-механическая теория требует, чтобы при полном заселении новых энергетических уровней электронами общая энергия осталась без изменения, т.е. она должна остаться равной Е0.  Иначе говоря, должно выполняться равенство

4(Е2 – Е0) = 6(Е0 – Е1),

где 4 и 6 – максимальное число электронов на d- и d-АО. Из этого равенства следует, что

(Е2 – Е0) / (Е0 – Е1) = 3/2 и  (Е2 – Е1) / (Е0 – Е1>) = 5/2, или 

0 / (Е0 – Е1) = 5/2, откуда (Е0 – Е1) = 2/5  0>.

Размещение каждого электрона из шести максимально возможных на d-орбитали вызывает уменьшение (выигрышэнергии на 2/5 0.

Наоборот, размещение каждого электрона из четырех возможных на d-орбитали вызывает увеличение (затратуэнергии на 3/5 0.

Если заселить электронами d- и d-орбитали полностью, то никакого выигрыша энергии не будет (как не будет и дополнительной затраты энергии):

4  3/5  0  6  2/5  0 = 0.

Но если исходная d-АО заселена только частично и содержит от 1 до 6 электронов, и эти электроны размещаются только на d-АО, то мы получим значительный выигрыш энергии.  Выигрыш энергии за счет преимущественного заселения электронами d-атомных орбиталей называют энергией стабилизации комплекса полем лигандов.

Специфика каждого из лигандов сказывается в том, какое поле данный лиганд создает – сильное или слабое. Чем сильнее поле лигандов, тем больше значение параметра расщепления 0.

С 41. Изучение параметра расщепления, как правило, основано на спектроскопических исследованиях. Длины волн полос поглощениякомплексов  в кристаллическом состоянии или в растворе, обусловленные переходом электронов с d- на d-АО, связаны с параметром расщепления 0 следующим образом:

 = 1 / ;  0 = Е2 – Е1 = h   = h  (c / ) = h  c  ,

где постоянная Планка h равна 6,626  1034 Дж с;  скорость света с = 3  1010 см/с.  единица измерения 0 – та же, что у волнового числа :

1см1, что приближенно отвечает 12 Дж/моль.

Параметр расщепления, помимо типа лиганда, зависит от степени окисления и природы комплексообразователя.  В КС, включающих комплексообразователи одного и того же периода и в одинаковой степени окисления, с одними и теми же лигандами, параметр расщепления примерно одинаков. С ростом степени окисления комплексообразователя значение 0увеличивается. Так, для аквакомплексов [Mn(H2O)6]2+ и [Fe(H2O)6]2+ значение параметра расщепления составляет 7800 и 10400 см1, а для [Mn(H2O)6]3+ и [Fe(H2O)6]3+  13700 и 21000 см1 соответственно.

При увеличении заряда ядра атома-комплексообразователя 0 тоже растет. Катионы гексаамминкобальта(III) [Co(NH3)6]3+,гексаамминродия(III) [Rh(NH3)6]3+, гексаамминиридия(III) [Ir(NH3)6]3+ (Z = 27, 45 и 77) характеризуются параметрами расщепления, равными 22900, 34100 и 41000 см-1.

С 44. Зависимость 0 от природы лигандов более разнообразна. В результате исследования многочисленных комплексных соединений было установлено, что по способности увеличивать параметр расщепления металлов-комплексообразователей, находящихся в своих обычных степенях окисления, наиболее распространенные лиганды можно расположить в следующий спектрохимический ряд, вдоль которого значение 0 монотонно растет:  I  Br  Cl  NCS   NO3  F  OH  H2O  H  NH3  NO2  CN  NO  CO.

Таким образом, наиболее сильное электростатическое поле вокруг комплексообразователя и самое сильное расщепление d-АО вызывают лиганды NO2CN и CO.

С 40. Рассмотрим распределение электронов по d- и d-орбиталям в октаэдрическом поле лигандов. Заселение d- и d-орбиталей происходит в полном соответствии с правилом Гунда и принципом Паули. При этом независимо от значения параметра расщепления первые три электрона занимают квантовые ячейки d-подуровня:

С 42. Если число электронов на d-подуровне комплексообразователя больше трех, для размещения их по расщепленным подуровням появляется две возможности. При низком значении параметра расщепления (слабое поле лигандов) электроны преодолевают энергетический барьер, разделяющий d- и d-орбитали; четвертый, а затем и пятый электроны заселяют квантовые ячейки d-подуровня. При сильном поле лигандов и высоком значении 0 заселение четвертым и пятым электроном d-подуровня исключено; происходит заполнение d-орбиталей.

При слабом поле лигандов заселяющие квантовые ячейки 4 или 5 электронов имеют параллельные спины, поэтому получаемый комплекс оказывается сильно парамагнитенВ сильном поле лигандов образуются одна, а затем две электронные пары на d-подуровне, так чтопарамагнетизм комплекса оказывается гораздо слабее.

Шестой, седьмой и восьмой электроны в случае слабого поля оказываются снова на d-подуровне, дополняя конфигурации до электронных пар (одной в случае d6, двух – d7 и трех – d8):

В случае сильного поля лигандов шестой электрон заселяет d-АО, приводя к диамагнетизму комплекса, после чего седьмой и восьмой электроны поступают на d-подуровень:

Очевидно, при восьмиэлектронной конфигурации различия в строении между комплексами с лигандами слабого и сильного поля исчезают. Заселение орбиталей девятым и десятым электроном также не различается для комплексов обоих типов:

Вернемся к рассмотрению электронного строения октаэдрических комплексных ионов [Co(NH3)6]3+ и [CoF6]3. В соответствии с расположением в спектрохимическом ряду, аммиак NH3 относится к числу лигандов сильного поля, а фторид-ион F – слабого поля. Следовательно, заселение электронами атомных орбиталей в данных комплексах будет происходит по схеме:

В анионе [CoF6]3 лиганды F создают слабое кристаллическое поле ( 0 = 13000 см1), и все электроны исходной 3d6-АО размещаются наd- и d-орбиталях без какого-либо спаривания. Комплексный ион является высокоспиновым и содержит четыре неспаренных электрона, поэтому он парамагнитен.

В ионе [Co(NH3)6]3+ лиганды NH3 создают сильное кристаллическое поле (0 = 22900 см1), все 3d6-электроны размещаются на более энергетически выгодной d-орбитали. Переход электронов с d- на d-орбитали невозможен из-за слишком высокого энергетического барьера. Поэтому данный комплексный катион является низкоспиновым, он не содержит неспаренных электронов и диамагнитен.

С 44. Аналогичным образом могут быть представлены схемы распределения электронов по орбиталям в октаэдрическом поле для ионов[Fe(H2O)6]2+ и [Fe(CN)6]4:

Лиганды H2O создают слабое поле; обмен электронами между d- и d-орбиталями не вызывает затруднений и поэтому число неспаренных электронов в комплексном ионе такое же, как и в условном ионе Fe+II. Получаемый аквакомплекс – высокоспиновый, парамагнитный.  Наоборот, лиганды CN вызывают значительное расщепление d-АО, составляющее 33000 см1. Это значит, что существует сильнаятенденция к размещению всех электронов на d-орбиталях. Выигрыш энергии, получаемый при таком заселении орбиталей, много больше энергетических затрат, обусловленных спариванием электронов.



Источник: studfile.net


Добавить комментарий