Формулы тригонометрии уравнения

Формулы тригонометрии уравнения

Рассмотрим пример решения тригонометрического уравнения онлайн на сайте Контрольная Работа РУ.

Этот сайт даёт полное решение тригонометрического уравнения.

Решение тригонометрических уравнений онлайн

Плюс для некоторых уравнений есть графическое решение.

Итак, рассмотрим пример:

Требуется решить тригонометрическое уравнение cos(x/4-pi/3) = 1/2 и найти x, при которых выполняется это уравнение.

Для этого переходим на страницу

>>уравнения онлайн<<

и нажимаем Решить уравнение!.

Получим подробное решение:

Дано уравнение $$\cos{\left (\frac{x}{4} — \frac{\pi}{3} \right )} = \frac{1}{2}$$ — это простейшее тригонометрическое ур-ние.
Это ур-ние преобразуется в $$\frac{x}{4} + \frac{\pi}{6} = 2 \pi n + \operatorname{asin}{\left (\frac{1}{2} \right )}$$ $$\frac{x}{4} + \frac{\pi}{6} = 2 \pi n — \operatorname{asin}{\left (\frac{1}{2} \right )} + \pi$$ Или $$\frac{x}{4} + \frac{\pi}{6} = 2 \pi n + \frac{\pi}{6}$$ $$\frac{x}{4} + \frac{\pi}{6} = 2 \pi n + \frac{5 \pi}{6}$$ , где n — любое целое число
Перенесём $$\frac{\pi}{6}$$ в правую часть ур-ния с противоположным знаком, итого: $$\frac{x}{4} = 2 \pi n$$ $$\frac{x}{4} = 2 \pi n + \frac{2 \pi}{3}$$ Разделим обе части полученного ур-ния на $$\frac{1}{4}$$ получим ответ: $$x_{1} = 8 \pi n$$ $$x_{2} = 8 \pi n + \frac{8 \pi}{3}$$



Источник: www.kontrolnaya-rabota.ru


Добавить комментарий