Найти основание

Найти основание

Инструкция

Задача 1.Найдите основания BC и AD прямоугольной трапеции, если известна длина диагонали AC = f; длина боковой стороны CD = c и угол при ней ADC = α.Решение:Рассмотрите прямоугольный треугольник CED. Известны гипотенуза c и угол между гипотенузой и катетом EDC. Найдите длины сторон CE и ED: по формуле угла CE = CD*sin(ADC); ED = CD*cos(ADC). Итак: CE = c*sinα; ED=c*cosα. Рассмотрите прямоугольный треугольник ACE. Гипотенуза AC и катет CE вам известны, найдите сторону AE по правилу прямоугольного треугольника: сумма квадратов катетов равна квадрату гипотенузы. Итак: AE(2) = AC(2) — CE(2) = f(2) — c*sinα. Вычислите квадратный корень из правой части равенства. Вы нашли верхнее основание прямоугольной трапеции.

Длина основания AD является суммой длин двух отрезков AE и ED. AE = квадратный корень(f(2) — c*sinα); ED = c*cosα).Итак: AD = квадратный корень(f(2) — c*sinα) + c*cosα.Вы нашли нижнее основание прямоугольной трапеции.

Задача 2.Найдите основания BC и AD прямоугольной трапеции, если известна длина диагонали BD = f; длина боковой стороны CD = c и угол при ней ADC = α.Решение:Рассмотрите прямоугольный треугольник CED. Найдите длины сторон CE и ED: CE = CD*sin(ADC) = c*sinα; ED = CD*cos(ADC) = c*cosα.

Рассмотрите прямоугольник ABCE. По свойству прямоугольника AB = CE = c*sinα.Рассмотрите прямоугольный треугольник ABD. По свойству прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Поэтому AD(2) = BD(2) — AB(2) = f(2) — c*sinα.Вы нашли нижнее основание прямоугольной трапеции AD = квадратный корень(f(2) — c*sinα).

По правилу прямоугольника BC = AE = AD — ED = квадратный корень(f(2) — c*sinα) — с*cosα.Вы нашли верхнее основание прямоугольной трапеции.



Источник: www.kakprosto.ru


Добавить комментарий