Основные значения косинусов синусов тангенсов котангенсов

Основные значения косинусов синусов тангенсов котангенсов

Видеоурок: Синус, косинус, тангенс и котангенс угла

Лекция: Синус, косинус, тангенс, котангенс произвольного угла

Основные значения косинусов синусов тангенсов котангенсовСинус, косинус произвольного угла

Чтобы понять, что такое тригонометрические функции, обратимся к окружности с единичным радиусом. Данная окружность имеет центр в начале координат на координатной плоскости. Для определения заданных функций будем использовать радиус-вектор ОР, который начинается в центре окружности, а точка Р является точкой окружности. Данный радиус-вектор образует угол альфа с осью ОХ. Так как окружность имеет радиус, равный единице, то ОР = R = 1.

Основные значения косинусов синусов тангенсов котангенсов

Если с точки Р опустить перпендикуляр на ось ОХ, то получим прямоугольный треугольник с гипотенузой, равной единице.

Если радиус-вектор двигается по часовой стрелке, то данное направление называется отрицательным, если же он двигается против движения часовой стрелки — положительным.

Основные значения косинусов синусов тангенсов котангенсов   

Синусом угла данной окружности, образованного радиусом-вектором ОР, является ордината точки Р вектора на окружности. 

То есть, для получения значения синуса данного угла альфа необходимо определиться с координатой У на плоскости.

Как данное значение было получено? Так как мы знаем, что синус произвольного угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе, получим, что

Основные значения косинусов синусов тангенсов котангенсов

А так как R = 1, то sin(α) = y0.

В единичной окружности значение ординаты не может быть меньше -1 и больше 1, значит,

Основные значения косинусов синусов тангенсов котангенсов

Основные значения косинусов синусов тангенсов котангенсов

Синус принимает положительное значение в первой и второй четверти единичной окружности, а в третьей и четвертой — отрицательное.

Косинусом угла данной окружности, образованного радиусом-вектором ОР, является абсцисса точки Р вектора на окружности.

 

То есть, для получения значения косинуса данного угла альфа необходимо определиться с координатой Х на плоскости.

Косинус произвольного угла в прямоугольном треугольнике — это отношение прилежащего катета к гипотенузе, получим, что

Основные значения косинусов синусов тангенсов котангенсов

А так как R = 1, то cos(α) = x0.

В единичной окружности значение абсциссы не может быть меньше -1 и больше 1, значит,

Основные значения косинусов синусов тангенсов котангенсов

Основные значения косинусов синусов тангенсов котангенсов

Косинус принимает положительное значение в первой и четвертой четверти единичной окружности, а во второй и в третьей — отрицательное.

Тангенсом произвольного угла считается отношение синуса к косинусу. 

Если рассматривать прямоугольный треугольник, то это отношение противолежащего катета к прилежащему. Если же речь идет о единичной окружности, то это отношение ординаты к абсциссе.

Основные значения косинусов синусов тангенсов котангенсовОсновные значения косинусов синусов тангенсов котангенсов

Судя по данным отношениям, можно понять, что тангенс не может существовать, если значение абсциссы равно нулю, то есть при угле в 90 градусов. Все остальные значения тангенс принимать может.

Основные значения косинусов синусов тангенсов котангенсов

Тангенс имеет положительное значение в первой и третьей четверти единичной окружности, а во второй и четвертой является отрицательным.

Котангенсом произвольного угла называется отношение косинуса к синусу.

 

Рассматривая прямоугольный треугольник — отношение прилежащего катета к противолежащему, то есть абсциссы к ординате.

Основные значения косинусов синусов тангенсов котангенсовОсновные значения косинусов синусов тангенсов котангенсов

Так как ордината находится в знаменателе дроби, то котангенс не может существовать при угле альфа, равном нулю градусов.

Основные значения косинусов синусов тангенсов котангенсов

Котангенс принимает те же значения в четвертях единичной окружности, что и тангенс.

Все перечисленные функции являются периодичными. Косинус и синус имеют период 360 градусов, то есть 2Пи, а тангенс и котангенс 180 градусов, то есть Пи.

Основные значения косинусов синусов тангенсов котангенсов



Источник: cknow.ru


Добавить комментарий