P7 вычислить

P7 вычислить

Число A называется пределом функции y=f(x) в точке x0, если для любой последовательности точек из области определения функции, отличных от x0, сходящейся к точке x0(lim xn = x0), последовательность соответствующих значений функции сходится к числу A. Примечание: число «пи» (π) записывается как pi, знак как infinity
Некоторые виды записи пределов Например, найти предел запишем как x^3/exp(cos(x)). В качестве предела указываем infinity. см. также нахождение пределов, используя свойства первого замечательного предела и второго замечательного предела.

Примеры.
Вычислить указанные пределы:

1. = .

2. = 3. . Так как числитель и знаменатель обратились в нуль при x=4, то 4 – корень обоих многочленов, а значит, каждый из них разлагается на множители, одним из которых будет (x-4). Получаем
.

6. – не существует, так как -1<cos(x)<1.

7. . Обозначим , причем заметим, что при x→16, y→2. Получим:
.

8. . (Ответ получается непосредственно подстановкой (-∞) вместо x.)

9. . Здесь следует рассмотреть односторонние пределы:
; .
Следовательно, – не существует (так как у функции разные односторонние пределы).

Найти пределы функции, не применяя правило Лопиталя.
а) =
Ответ: 1/5

б)

= Ответ: 1/6 в) = e-2/2 = e-1 Ответ: 1/e

г)
Так как числитель и знаменатель обратились в нуль при x=1, то 1 – корень обоих многочленов, а значит, каждый из них разлагается на множители, одним из которых будет (x-1).
Найдем корни первого многочлена: x2+2x-3=0
D=22-4•1•(-3)=16
,
Найдем корни второго многочлена: x2-1=(x-1)(x+1)
Получаем:

Ответ: 2

д)

Ответ: 1/10



Источник: math.semestr.ru


Добавить комментарий