Сложение по модулю 2 онлайн калькулятор

Сложение по модулю 2 онлайн калькулятор


Примеры решений комплексных чисел + калькулятор

Понятия комплексные или мнимые числа впервые начали применяться при решении квадратных уравнений. Когда дискриминант получался меньше нуля (D

Обозначение мнимой единицы предложил Эйлер, он взял первую букву латинского слова «imaginarius», что в переводе означает «мнимый». Мнимая единица равна корню квадратному из минус одного:

А при возведении мнимой единицы в квадрат, применив элементарные математические операции, мы получим -1:

Существуют три различных формы записи комплексных чисел:

— алгебраическая;
— показательная;
— тригонометрическая.

Алгебраическая форма комплексного числа состоит из действительных, вещественных значений (a, b) и i – мнимой единицы. Комплексное число в алгебраической форме имеет вид a+bi, где a– действительная и bi – мнимая части.

Рисунок 1 – Построение комплексного числа на плоскости (в системе координат).

На вышеприведенном рисунке изображена комплексная плоскость, которую создают оси:

— действительная ось Re (real);
— мнимая ось Im (imaginarius).

В качестве примера на плоскости уже построено комплексное число 5+3i. По действительной оси было отложено a=5, и по мнимой b=3. Поднимем перпендикуляры с осей. Соединим образовавшуюся точку пересечения с нулем. Таким образом, мы получим радиус-вектор. Модуль комплексного числа (|z|) – это длина полученного радиус-вектора, или, другими словами, это расстояние от точки на комплексной плоскости до начала координат. Рассчитывается модуль комплексного числа по формуле:

На рисунке 1 вектор z образовывает с действительной осью угол — аргумент комплексного числа, который легко находится:

Значения a и b можно выразить через радиус-вектор и угол фи (прямоугольный треугольник с углом φ, прилегающим катетом a, гипотенузой |z|):

Тогда, подставив полученные значения в алгебраическую форму, мы выведем следующую форму:

Тригонометрическая форма комплексного числа была выражена из алгебраической и имеет вид:

Я думаю, Вам уже стало понятно, что любое комплексное число можно преобразовать в любую из трех форм. Показательная (экспоненциальная) форма комплексного числа имеет следующее равенство с алгебраической:

Комплексные числа являются равными, только если у них равны и действительные, и мнимые части.

Онлайн калькулятор комплексных чисел

Программа для электротехнических расчетов

Программа выполняет вычисления c комплексными числами, представленными в алгебраической или показательной форме, а так же рациональными числами.

— сложение, вычитание, умножение, деление иррациональных чисел;
— перевод чисел из алгебраической формы в показательную и наоборот;
— возможность задавать точность вычисления от 1-го до 4-х десятичных знаков;
— задание угла как в градусах, так и в радианах;
— предусмотрено использование переменных;
построение векторных диаграммм;
— вывод результатов расчетов на печать, сохранение и повторный ввод для продолжения расчета.

Перед использованием софта, рекомендуем ознакомиться со «Справкой», которая находиться в архиве с программой. *Все свои пожелания/замечания, касающиеся работы калькулятора, оставляйте в комментариях или обращайтесь непосредственно разработчику.

Математические действия над комплексными числами

Сложение и вычитание комплексных чисел необходимо осуществлять в алгебраической форме, если число представлено в иной форме, нужно перевести его в алгебраическую, воспользовавшись калькулятором, или же вручную по формулам ниже:

Сложение

Вычитание

Умножение и деление комплексных чисел возможно реализовать как в алгебраической, так и в показательной формах. Но намного практичней осуществлять действие в показательной форме, этот способ займет намного меньше времени при расчете, например, токов короткого замыкания.

Умножение
Алгебраическая форма:
Показательная форма:

Комплексно-сопряженными называются числа, у которых действительные части равны, а знак перед мнимой единицей – разный.

Сложение сопряженных чисел:

Умножение комплексно-сопряженных:

При делении комплексных чисел в алгебраической форме необходимо избавиться от мнимой составляющей в знаменателе. Для этого числитель и знаменатель домножают на число, сопряженное знаменателю.

Деление
Алгебраическая форма:
Показательная форма:

Перевод чисел из алгебраической формы в показательную и наоборот возможно осуществить с помощью калькулятора для комплексных чисел, который Вы можете скачать по ссылке. Кстати, именно этим калькулятором я пользовался при расчете комплексных чисел ТОЭ, когда учился в университете. Пользоваться им крайне просто. Для перевода в разные формы используется установка нужного «флажка».

Как считать комплексные числа на инженерном калькуляторе?

Если на руках имеется реальный калькулятор, который Вы купили в канцелярском магазине, и он обладает возможностью расчета комплексных чисел, то внимаем. Сейчас расскажу как им пользоваться.

1. Чтоб перевести комплексное число 5+3i из алгебраической формы в показательную, нажимаем клавиши в следующей последовательности:

(красным цветом помечены результаты, которые выведутся на дисплей калькулятора)

2. Перевод 4e-i7° в алгебраическую форму:

3. И в завершение выполним умножение (5+3i)∙(2-4i):

Кнопка калькулятора 2ndf — «secondfunction» (вторая функция):

— переводит в показательную форму;
— в алгебраическую.

Недостаточно прав для комментирования



Источник: h4e.ru


Добавить комментарий